題:
宇航員可以旋轉嗎?
David
2013-11-29 15:28:46 UTC
view on stackexchange narkive permalink

我們知道,如果一個虛構的宇航員在星際中(沒有外力)並且初始速度為零,那麼他就無法改變其質心的位置。動量守恆定律說:$$ 0 = \ overrightarrow {F} _ {ext} = \ frac {d \ overrightarrow {p}} {dt} = m \ frac {d \ overrightarrow {v} _ {cm}} {dt} $$

但是我沒有立即得到證明,宇航員無法改變他在太空中的方位。剛體的證明是即時的(來自角動量守恆定律)。但是,宇航員不是剛體。

問題是:宇航員經過一定的運動順序後能否回到初始位置,但方向不同(改變“他的角度”)?如果是,那怎麼辦?

相關:http://physics.stackexchange.com/q/28011/
相關:http://physics.stackexchange.com/q/24632/2451和http://physics.stackexchange.com/q/10720/2451
相關:http://en.wikipedia.org/wiki/Falling_cat_problem
還不敢相信沒有人鏈接到[SmarterEveryDay](http://www.youtube.com/watch?v=VJcno_XL4RU):D
攜帶RCS背包? http://en.wikipedia.org/wiki/Manned_Maneuvering_Unit
問你的貓,她知道甚至可以示範。
相關文章:[宇航員如何轉入太空?](http://space.stackexchange.com/q/2954/)@sx.se
她有溜溜球嗎?
六 答案:
Selene Routley
2013-11-29 16:24:57 UTC
view on stackexchange narkive permalink

宇航員 可以改變自己的方向,就像貓從空中墜落一樣。轉換後,宇航員保持靜止並保持角動量。有一種相當漂亮的方式將這種旋轉理解為一種非人為現象,即貓(或宇航員)狀態圍繞貓配置空間中的閉環進行並行傳輸而產生的非平凡變換。當我有更多時間時,我會寫一些更多的信息,但是現在,可以用一種理想化的“機器人貓”(或宇航員)給出一個簡單的解釋,該思想由我彌補了思想實驗:

A Simplified Robot Cat

上面我畫了一個簡化的貓。我是一個非常聽話的人,所以只要我能想像它發出刺耳的聲音,這對我就足夠了!

現在,我們的“貓”由兩個圓柱部分組成:“ forecat”( F ),“障礙貓”( H )和兩條腿( L ),可以將它們伸進去,使其與後貓的表面齊平。伸入腿部後,一方面是前爪,另一方面是後部貓+腿組件,它們圍繞身體的軸線具有相同的質量慣性矩。貓的旋轉方式如下:

  1. 對稱展開腿部,將它們展開,如圖所示。現在,後貓+腿的慣性矩比前貓大。請注意,如果兩條腿在直徑上相對且相同且對稱地張開,則貓不會運動;
  2. 在使用內部馬達的情況下,前貓和後貓彼此施加相等且相反的扭矩以加速,然後停止。由於慣性矩之間的差異,前貓比後貓承受更大的角位移;
  3. 拉動雙腿。同樣,如果對稱地進行操作,則不會產生任何運動;
  4. 以加/減速順序再次使用內部電動機,以使前貓和後貓恢復到其初始對齊狀態(即沿氣缸的直線對齊)。現在這兩個半部分具有相同的質量慣性矩,因此當貓再次對準時,旋轉角度相等且相反。
  5. ol>

    由於步驟2中的旋轉角度不同,但是同樣在步驟5中,我們的機器貓的角度方向發生了變化。 ,請參見 Peadar Coyle的漿果階段數學。這篇文章沒有經過同行評審,但是看起來不錯,並且與我所見過的類似方法保持一致。

@David謝謝。一定要看一下QuantumMechanic剛剛發布的鏈接:它展示了貓旋轉的另一種(也許更現實的)方式http://physics.stackexchange.com/q/24632/2451
沒有步驟5。或者是“利潤”? :)
@David,上有一個Youtuber SmarterEveryDay的視頻。檢查[this](http://www.youtube.com/watch?v=RtWbpyjJqrU)
我猜想““ hinder-cat”(C)`應該是`H`?
在Wikipedia引用的這份[paper](http://web.mit.edu/shawest/Public/Papers/cat_gauge_theory.PDF)中,有一個有趣的圖表(頁面¥ 18 $ pdf,段落$ 6.1 $),介紹了兩部分的貓,在恆定的總角動量下。
克里斯·哈德菲爾德(Chris Hadfield)拍攝了一段與此有關的視頻,他通過扭動自己的身體完全轉彎而沒有觸碰任何東西。
機器人貓甚至不需要後腿來改變其方向。它所需要的只是使後半部相對於前半部完整旋轉,然後處於與初始狀態相同的“狀態”的能力。後部相對於前部完全旋轉後,兩個部相對於宇宙的其餘部分將具有新的方向。
如果腿伸出,旋轉然後再伸回,則其運動的基本組成部分將繞著原點對稱但以相同的旋轉方向行進的圓運動。
congusbongus
2013-11-29 21:15:22 UTC
view on stackexchange narkive permalink

對於那些充滿挑戰的人,這裡是您可以在家嘗試的另一種解釋和示範!我的數學講師向我教授了這個演示。您將需要的是:

一把轉椅

swivel chair

和一個重物(例如一本大教科書)

textbook

拿著重物站在椅子上(現在要注意平衡)。向前伸伸手臂。從上到下,您看起來像這樣(請原諒我差勁的繪畫技巧):

enter image description here

三角形是您的鼻子;它顯示了哪個

按住對象,將手臂向左旋轉。

enter image description here

請注意您的身體(和椅子)響應此動作順時針旋轉。然後將對象拉向自己。

enter image description here

仍然保持該對象靠近您,將其向右移動。

enter image description here

請注意,您的身體和椅子會以逆時針方向旋轉,但幅度不如伸胳膊時的幅度大。

您可以繼續重複這些動作...

enter image description here

恭喜!您現在可以在轉椅上自由旋轉,而無需任何支撐。

雖然這是一種非常低效的自我旋轉方式,但原理與貓旋轉示例完全相同。

許多孩子坐在這些椅子中的一個上時會自動做這些事情,方法是將雙腿擺成一圈-延長,雙腿的動作與伸出書時的動作相同
雖然原則上是正確的,但我擔心椅子軸上的摩擦會否定這是一個有用的證明。通過使周期的任一部分足夠慢,可以使用椅子的靜摩擦力來防止移動,因此-在不更改週期方向的情況下-可以與書本的方向相反或相反地轉動。
@EmilioPisanty:是的,但是它幾乎是一個近似值,而無需實際進入太空。在實踐中,這些椅子的摩擦力通常很小(至少要保持得很好),因此,除非您以蝸牛的速度進行鍛煉,否則大多數情況下都可以忽略它。 (作為雙重檢查,您可以嘗試將對象保持恆定的距離,但以不同的速度左右移動它。如果沒有觀察到任何明顯的淨旋轉,則摩擦的影響可以忽略不計。)
@IlmariKaronen對於我剛剛嘗試過的普通辦公椅,很容易在恆定距離處產生淨旋轉。如果您做示範的權利,那麼它將做的工作;但是,如果孩子們喜歡它,他們可能會發現另一種機制,並且需要謹慎地解釋它是什麼以及差異在哪裡。
您可以將其掛在繩子的末端,並輕鬆完成此操作。
Loren Pechtel
2013-11-29 22:54:35 UTC
view on stackexchange narkive permalink

還有另一種方法可以執行此操作,類似於太空飛船的實際操作方式:

在弦上加重,將其舉起並旋轉。您將朝相反的方向轉動。當您停止它時,您也將停止轉動。

當然,這會產生離軸力,這將是一個真正的痛苦。真正的航天器通過一組內部輪來做到這一點,以便它們可以在任何軸上旋轉。

我在大學期間為實現此目的的設備製作了一個模型-三個帶三個飛輪的電動機,兩個軸相互垂直。通過增加飛輪的速度,設備將承受相反方向的扭矩。另外兩個飛輪使預測飛行結果變得棘手。
-1
@LorenPechtel哪些航天器實際使用飛輪?例如,阿波羅(Apollo)維修模塊改用橫向推進器,我認為情況一直如此。
-1
這種方法的優點是,如果飛輪的軸線穿過重心,則很明顯,當飛輪以恆定速率旋轉時-飛輪可以在任意任意時間長度內輕鬆完成操作-工作站將以恆定速度反向旋轉。旋轉的持續時間將確定最終方向。
@magma:推進器和飛輪有不同的用途。如果一艘飛船具有一定數量的有害旋轉動量,則抵消該要求將需要飛輪以一定速度永遠旋轉,而應用推進器則是一次性的。另一方面,如果飛行器的角動量符合要求(取決於應用,每個軌道為零或一個旋轉),則通過飛輪校正姿態時使用的唯一稀缺資源就是飛輪電機的耐力和軸承(比推進器燃料少得多)。
@supercat(舊螺紋,但是:)並非如此-反作用輪可以[飽和](https://www.youtube.com/watch?v=7Js5x4NhUxU),這需要使用推進器進行重新設置。
Nathaniel
2013-11-29 16:17:18 UTC
view on stackexchange narkive permalink

其他答案也指出了其他可能更有效的方法,但是一種非常簡單的方法如下:從雙臂平行於身體開始。然後將它們向後擺動,在頭頂上方,然後在身體前面向下擺動,使它們回到起始位置。進行此操作後,身體的姿勢將稍有不同,腳比以前稍微向前移動,頭部稍微向後移動。可以重複進行此操作,以產生較大的方向變化,也可以反向執行該操作以向相反方向旋轉。

這似乎似乎不起作用,但如果我們考慮保持角動量,我們可以看到它必須這樣做。當宇航員開始移動手臂時,她給了他們一些角動量。這意味著她的身體的角動量以相等且相反的量變化。因為她的身體的慣性矩比胳膊大,所以角速度會更小,因為$ \ omega = L / I $。這意味著,一旦她的手臂完成了完整的旋轉,她的身體方向將只改變很小的角度(但不為零)。當她停止移動手臂時,角動量沿相反的方向傳遞,並且身體的角動量再次變為零。

此動作產生的旋轉量可以通過將雙腿縮進身體中來增加,降低其整體慣性矩。正如dmckee在評論中指出的那樣,跳板潛水員使用了這項技術來執行半扭動作,因此我們知道它確實有效,並且如果執行正確可以非常有效。 (但是,在壓力服的阻礙下有效地執行此操作可能是另一回事。)

獎金編輯:該技術在以下時間0:50開始的零重力條件下(在Skylab上)得到了證明。視頻:

https://youtu.be/RjvmXLyrtjM

不起作用。當宇航員試圖將屍體放回原處時,她將回到相同的方向。多虧了對角動量定律的討論。
@David跳板潛水員一直都在這樣做(儘管僅用於半扭轉動作,但存在與不穩定翻轉有關的另一種機制,大約$ I_2 $用於高扭曲)。請參閱congusbongus的答案。角定向沒有守恆定律。僅對於角動量和非剛性複合體*可以*改變其旋轉相位(即,如果不旋轉,則其方向)。
@David保持動量實際上是它起作用的原因。開始運動時,她將角動量傳遞到手臂,而停止時,角動量又傳遞回去。由於她的身體與手臂的慣性矩不同,因此旋轉一圈後,她的方位將不會相同。
我已經重寫了整個內容-我認為以前的版本不清楚,因為人們出於某種原因將其否決。
DarioP
2014-08-03 23:20:30 UTC
view on stackexchange narkive permalink

我認為最簡單的方法是考慮使用反應輪。該設備包括一個帶有飛輪的電動機。當電動機開始旋轉時,車輪將獲得一定的角動量,並獲得相等且相反的動量,電動機的保持架及其保持器(船,火箭,宇航員...)會反向旋轉。當達到所需的方向足以使電動機斷電以停止旋轉時。

如果宇航員沒有攜帶小的反作用輪,他也可以開始繞圈移動肢體,以便例如,他的手獲得了一些角動量,他的身體計數器旋轉了。由於手無法像電動機一樣快地旋轉並且手的重量比身體小,因此需要一段時間,但是它可以工作。當然,有更好的運動順序會更有效,請參閱Rod Vance的答案。

user50234
2014-06-10 13:53:54 UTC
view on stackexchange narkive permalink

當一個真正的武術大師觀看各種手臂動作與其他軀幹相結合時,在空中一動不動時,轉動的能力就很明顯了。從我的經驗中,一次都看不到超過推進的動作。

我碰巧知道,背部不好,為了下床或躺下,我舉起了手臂筆直向上,朝我不想走的方向擺動,以使我的軀幹在嘗試站立時不會彎曲。然後,我將重物(手臂)放在地上,以使我的背部舉起40磅重的力量來站立。

是的,有時候看起來很有趣,我發起來放開了,可以坐起來,但是每個認為大事情都會發生的人。不,只是站著,痛苦就最小了。站起來了!



該問答將自動從英語翻譯而來。原始內容可在stackexchange上找到,我們感謝它分發的cc by-sa 3.0許可。
Loading...