題:
傅立葉變換Klein Gordon方程
user82235
2014-02-25 18:43:42 UTC
view on stackexchange narkive permalink

從位置空間中的Klein Gordon開始,\ begin {align *} \ left(\ frac {\ partial ^ 2} {\ partial t ^ 2}-\ nabla ^ 2 + m ^ 2 \ right)\ phi (\ mathbf {x},t)= 0 \ end {align *},然後使用傅立葉變換:$ \ displaystyle \ phi(\ mathbf {x},t)= \ int \ frac {d ^ 3p} {(2 \ pi)^ 3} e ^ {i \ mathbf {p} \ cdot \ mathbf {x}} \ phi(\ mathbf {p},t)$:\ begin {align *} \ int \ frac {d ^ 3p } {(2 \ pi)^ 3} \ left(\ frac {\ partial ^ 2} {\ partial t ^ 2}-\ nabla ^ 2 + m ^ 2 \ right)e ^ {i \ mathbf {p} \ cdot \ mathbf {x}} \ phi(\ mathbf {p},t)& = 0 \\\ int \ frac {d ^ 3p} {(2 \ pi)^ 3} e ^ {i \ mathbf {p} \ cdot \ mathbf {x}} \ left(\ frac {\ partial ^ 2} {\ partial t ^ 2} + | \ mathbf {p} | ^ 2 + m ^ 2 \ right)\ phi(\ mathbf {p },t)& = 0 \ end {align *}現在我不明白為什麼我們能夠擺脫積分,而只剩下\ begin {align *} \ left(\ frac {\ partial ^ 2 } {\ partial t ^ 2} + | \ mathbf {p} | ^ 2 + m ^ 2 \ right)\ phi(\ mathbf {p},t)= 0 \ end {align *}

4分鐘內獲得4個好的答案!你中獎了...
而且,奇怪的是,沒有一個回答者願意回答這個問題。
四 答案:
Slaviks
2014-02-25 18:54:37 UTC
view on stackexchange narkive permalink

函數$ e ^ {i \ bf p \ cdot \ bf x} $作為$ \ bf x $的函數對於不同的$ \ bf p $是線性獨立的,因此線性疊加中的每個係數(即是,在整數中)必須為零。

JeffDror
2014-02-25 18:57:36 UTC
view on stackexchange narkive permalink

之所以可以去除積分和指數的原因是由於傅里葉變換的獨特性。明確地,我們有

\ begin {align} \ int \ frac {\,d ^ 3p} {(2 \ pi)^ 3} e ^ {i {\ mathbf {p}} \ cdot { \ mathbf {x}}} \ left(\ partial _t ^ 2 + {\ mathbf {p}} ^ 2 + m ^ 2 \ right)\ phi({\ mathbf {p}},t)& = 0 \\ \ int d ^ 3 x \ frac {\,d ^ 3p} {(2 \ pi)^ 3} e ^ {i({\ mathbf {p}}-{\ mathbf {p}}')\ cdot {\ mathbf {x}}} \ left(\ partial _t ^ 2 + {\ mathbf {p}} ^ 2 + m ^ 2 \ right)\ phi({\ mathbf {p}},t)& = 0 \\ \左(\ partial _t ^ 2 + {\ mathbf {p}} ^ {\ prime 2} + m ^ 2 \ right)\ phi({\ mathbf {p}'},t)& = 0 \ end {align}

\ begin {equation} \ int d ^ 3 xe ^ {-i({\ mathbf {p}}-{\ mathbf {p}}')\ cdot x} = \ delta({\ mathbf {p}}-{\ mathbf {p}}')\ end {equation}和\ begin {equation} \ int \ frac {d ^ 3 p} {(2 \ pi)^ 3} \ delta({\ mathbf {p}}-{\ mathbf {p}}')f({\ mathbf {p}})= f({\ mathbf {p}}')\ end {equation}

Yossarian
2014-02-25 18:54:51 UTC
view on stackexchange narkive permalink

您可以看到$ \ left(\ frac {\ partial ^ 2} {\ partial t ^ 2} + | \ mathbf {p} | ^ 2 + m ^ 2 \ right)\ phi(\ mathbf {p} ,t)$作為函數的傅立葉變換。而您的職能是什麼? 0,什麼是0-s傅里葉變換,零。

dolphus333
2014-05-19 18:14:04 UTC
view on stackexchange narkive permalink

由於$ e ^ {i \ textbf {p} \ cdot \ textbf {x}} $是平面波,因此當積分覆蓋所有動量空間時,它將積分至無窮大。如果積分求值為零,則剩餘項$ \ left(\ partial_t ^ 2 + | \ textbf {p} ^ 2 | + m ^ 2 \ right)\ phi \ left(\ textbf {p},t \對)$必須等於零。



該問答將自動從英語翻譯而來。原始內容可在stackexchange上找到,我們感謝它分發的cc by-sa 3.0許可。
Loading...